Computes 30-year risk for ASCVD (atherosclerotic cardiovascular disease) using the American Heart Association PREVENT equations (2023).
Usage
ascvd_30y_prevent(
gender = c("male", "female"),
age,
sbp,
bp_med,
totchol,
hdl,
statin,
diabetes,
smoker,
egfr,
bmi,
hba1c = NULL,
uacr = NULL,
zip = NULL,
model = "auto",
...
)Arguments
- gender
patient gender (male, female)
- age
patient age (years), between 30 and 79
- sbp
Systolic blood pressure (mm Hg)
- bp_med
Patient is on a blood pressure medication (1=Yes, 0=No)
- totchol
Total cholesterol (mg/dL)
- hdl
HDL cholesterol (mg/dL)
- statin
Patient is on a statin (1=Yes, 0=No)
- diabetes
Diabetes (1=Yes, 0=No)
- smoker
Current smoker (1=Yes, 0=No)
- egfr
Estimated glomerular filtration rate (mL/min/1.73m2)
- bmi
Body mass index (kg/m2)
- hba1c
Glycated hemoglobin (HbA1c) in percent (optional)
- uacr
Urine albumin-to-creatinine ratio in mg/g (optional)
- zip
ZIP code for Social Deprivation Index (optional)
- model
PREVENT model variant to use: "auto" (default, selects based on available data), "base", "hba1c", "uacr", "sdi", or "full"
- ...
Additional predictors can be passed and will be ignored
References
Khan SS, Matsushita K, Sang Y, Ballew SH, Grams ME, Surapaneni A, Blaha MJ, Carson AP, Chang AR, Ciemins E, Go AS, Gutierrez OM, Hwang SJ, Jassal SK, Kovesdy CP, Lloyd-Jones DM, Shlipak MG, Palaniappan LP, Sperling L, Virani SS, Tuttle K, Neeland IJ, Chow SL, Rangaswami J, Pencina MJ, Ndumele CE, Coresh J; Chronic Kidney Disease Prognosis Consortium and the American Heart Association Cardiovascular-Kidney-Metabolic Science Advisory Group. Development and Validation of the American Heart Association's PREVENT Equations. Circulation. 2024 Feb 6;149(6):430-449.
Examples
library(CVrisk)
# Base model (default when model = "auto" and no optional predictors provided)
ascvd_30y_prevent(
gender = "female", age = 50,
sbp = 160, bp_med = 1,
totchol = 200, hdl = 45,
statin = 0, diabetes = 1, smoker = 0,
egfr = 90, bmi = 35
)
#> [1] 35.4
# Explicitly specify base model
ascvd_30y_prevent(
gender = "male", age = 45,
sbp = 130, bp_med = 0,
totchol = 200, hdl = 50,
statin = 0, diabetes = 0, smoker = 1,
egfr = 95, bmi = 28,
model = "base"
)
#> [1] 13.8
# Auto model with UACR (will use uacr model variant)
ascvd_30y_prevent(
gender = "male", age = 55,
sbp = 140, bp_med = 0,
totchol = 213, hdl = 50,
statin = 0, diabetes = 0, smoker = 0,
egfr = 90, bmi = 30,
uacr = 25
)
#> [1] 19.8
